首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   30篇
  国内免费   22篇
化学   61篇
力学   17篇
数学   30篇
物理学   272篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   1篇
  2018年   8篇
  2017年   11篇
  2016年   6篇
  2015年   9篇
  2014年   24篇
  2013年   22篇
  2012年   15篇
  2011年   22篇
  2010年   22篇
  2009年   16篇
  2008年   27篇
  2007年   26篇
  2006年   24篇
  2005年   17篇
  2004年   21篇
  2003年   18篇
  2002年   12篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
1.
Since the breakthrough of conductive polymers in 1977, scientists have made great efforts to create small band gap (Eg) conjugated polymers. Two general strategies to design small Eg conjugated polymers are quinoid structure and donor-acceptor structure. Ultrasmall Eg conjugated polymers (Eg<1.0 eV) always suffer from poor air stability because of high-lying HOMO energy levels. In this work, we report a new strategy to design ultrasmall Eg conjugated polymers by N−B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B−N) and boron-nitrogen coordination bond (B←N). The resulting polymer exhibits an Eg of 0.82 eV and an onset absorption wavelength of >1500 nm. Moreover, the polymer exhibits excellent air stability because of its low-lying LUMO/HOMO energy levels. An unprecedented property of this polymer is the selective light absorption in the infrared range (800–1500 nm) and high transparency in the visible range (400–780 nm). Using this property, for the first time, we demonstrate the application of conjugated polymers as transparent thermal-shielding coating layer on glass, which reduces indoor solar irradiation through window and consequently reduces power consumption for cooling of buildings and cars in summer.  相似文献   
2.
980nm半导体激光器输出光谱特性的改善   总被引:1,自引:0,他引:1  
陈少娟  李毅  袁文瑞  陈建坤  郑鸿柱  郝如龙  孙瑶  唐佳茵  刘飞 《光子学报》2015,44(1):114003-0114003
为了改善980nm半导体激光器的输出光谱特性,采用传输矩阵分析法推导了双布喇格光纤光栅谐振腔的传输表达式,对布喇格光纤光栅长度和谐振腔腔长对输出光谱的影响进行模拟仿真,结果表明布喇格光纤光栅长度对输出光谱的影响大于谐振腔腔长对输出光谱的影响,加长布喇格光纤光栅长度能压缩输出光谱线宽.在980nm半导体激光器尾纤上写入不同布喇格光纤光栅长度的双布喇格光纤光栅谐振腔,验证了引入双布喇格光纤光栅谐振腔在压缩980nm半导体激光器输出光谱线宽的同时改善了其输出光谱的稳定性.当环境温度在0~75℃范围内变化时,980nm半导体激光器输出中心波长仅变化0.06nm.  相似文献   
3.
Interaction between solitons and a sandy bed in shallow water is investigated. In our experiments, solitons are generated on the background of a harmonic wave, in a wave flume used in resonant mode. It is found that the sand ripples formed by the solitons propagation induce a significant decrease of solitons amplitude and of the phase shift between the soliton and the harmonic wave. However, the amplitude of the harmonic wave is approximately constant. The possible physical processes of such behaviour for the soliton amplitude and for the harmonic wave amplitude are discussed. To cite this article: F. Marin et al., C. R. Mecanique 333 (2005).  相似文献   
4.
《中国化学快报》2020,31(8):2155-2158
Detection of trace-level hydrogen sulfide (H2S) gas is of great importance whether in industrial production or disease diagnosis. This research presents a novel H2S gas sensor based on integrated resonant dual-microcantilevers which can identify and detect trace-level H2S in real-time. The sensor consists of two integrated resonant microcantilever sensors with different functions. One cantilever sensor can identify H2S by outputting positive frequency shift signals, while the other cantilever sensor will detect H2S as a normally used cantilever sensor with negative frequency shifts. Combined the two cantilever sensors, the proposed gas sensor can distinguish H2S from a variety of common gases, and the detection limit to H2S of the sensor is as sensitive as below 1 ppb.  相似文献   
5.
《Physics letters. A》2020,384(11):126243
We analyze the dynamics of bright-bright solitons in two-component Bose-Einstein condensates (BECs) subject to parametric perturbations using the variational approach and direct numerical simulations. The system is described by a vector nonlinear Schrödinger equation (NLSE) appropriate to coupled multi-component BECs. A periodic variation of the inter-component coupling coefficient is used to explore nonlinear resonances and splitting of the coupled bright solitons. The analytical predictions are confirmed by direct numerical simulations of the vector NLSE.  相似文献   
6.
7.
At this paper a field effect transistor based on graphene nanoribbon (GNR) is modeled. Like in most GNR-FETs the GNR is chosen to be semiconductor with a gap, through which the current passes at on state of the device. The regions at the two ends of GNR are highly n-type doped and play the role of metallic reservoirs so called source and drain contacts. Two dielectric layers are placed on top and bottom of the GNR and a metallic gate is located on its top above the channel region. At this paper it is assumed that the gate length is less than the channel length so that the two ends of the channel region are un-gated. As a result of this geometry, the two un-gated regions of channel act as quantum barriers between channel and the contacts. By applying gate voltage, discrete energy levels are generated in channel and resonant tunneling transport occurs via these levels. By solving the NEGF and 3D Poisson equations self consistently, we have obtained electron density, potential profile and current. The current variations with the gate voltage give rise to negative transconductance.  相似文献   
8.
Short-duration electrical pulses play important roles in ultrafast time-domain metrology: they are used to sample rapidly varying signals or as probe signals in ranging radars, time-domain reflectometry and in communication. In this work, we design a nonlinear transmission, which is loaded with resonant tunneling diode to be suitable for microwave A/D conversion. A resonant tunneling diode (RTD) has a negative differential resistance that means when the voltage increases the current decreases. The equivalent circuit of monostable line is given. The simulation is performed by using OrCad program. Results show that a spike is produced and after a charging time constant, another switching occurs. Hence – similar to a relaxation oscillator – the spiking period is determined by the amplitude and frequency of the input current. The transmission line itself ensures the generation and propagation of identical spikes, such as solitons formed after few diodes.  相似文献   
9.
Graphene nanostrips with single or few layers can be used as bending resonators with extremely high sensitivity to environmental changes. In this paper we report molecular dynamics (MD) simulation results on the fundamental and secondary resonant frequencies f of cantilever graphene nanostrips with different layer number n and different nanostrip length L. The results deviate significantly from the prediction of not only the Euler-Bernoulli beam theory (fnL−2), but also the Timoshenko's model. Since graphene nanostrips have extremely high intralayer Young's modulus and ultralow interlayer shear modulus, we propose a multibeam shear model (MBSM) that neglects the intralayer stretch but accounts for the interlayer shear. The MBSM prediction of the fundamental and secondary resonant frequencies f can be well expressed in the form ffmono∝[(n-1)/n]bL−2(1−b), where fmono denotes the corresponding resonant frequency as the layer number is 1, with b=0.61 and 0.77 for the fundamental and secondary resonant modes. Without any additional parameters fitting, the prediction from MBSM agrees excellently with the MD simulation results. The model is thus of importance for designing multilayer graphene nanostrips based applications, such as resonators, sensors and actuators, where interlayer shear has apparent impacts on the mechanical deformation, vibration and energy dissipation processes therein.  相似文献   
10.
《中国化学快报》2020,31(6):1680-1685
H_2S can cause multiple diseases and poses a great threat to human health.However,the precise detection of extremely toxic H_2S at room temperature is still a great challenge.Here,a facile solvent evaporation induced aggregating assembly(EIAA) method has been applied for the production of ordered mesoporous carbon(OMCs) in an acidic THF/H_2 O solution with high-molecular-weight poly(ethylene oxide)-b-polystyrene(PEO-b-PS) copolymers as the structure-directing agent,formaldehyde and resorcinol as carbon precursors.Along with the continuous evaporation of THF from the mixed solution,cylindrical micelles are formed in the solution and further assemble into highly ordered mesostructure.The obtained OMCs possesses a two-dimensional(2 D) hexagonal mesostructure with uniform and large pore diameter(~19.2 nm),high surface area(599 m~2/g),and large pore volume(0.92 cm~3/g).When being used as the resonant cantilever gas sensor for room-temperature H_2S detection,the OMCs has delivered not only a superior gas sensing performance with ultrafast re s ponse(14 s) and recovery(21 s) even at low concentration(2 ppm) but also an excellent selectivity toward H_2S among various common interfering gases.Moreover,the limit of detection is better than 0.2 ppm,indicating its potential application in environmental monitoring and health protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号